Surfactant phospholipid DPPC downregulates monocyte respiratory burst via modulation of PKC.

نویسندگان

  • Alex Tonks
  • Joan Parton
  • Amanda J Tonks
  • Roger H K Morris
  • Alison Finall
  • Kenneth P Jones
  • Simon K Jackson
چکیده

Pulmonary surfactant phospholipids have been shown previously to regulate inflammatory functions of human monocytes. This study was undertaken to delineate the mechanisms by which pulmonary surfactant modulates the respiratory burst in a human monocytic cell line, MonoMac-6 (MM6). Preincubation of MM6 cells with the surfactant preparations Survanta, Curosurf, or Exosurf Neonatal inhibited the oxidative response to either lipopolysaccharide (LPS) and zymosan or phorbol 12-myristate 13-acetate (PMA) by up to 50% (P < 0.01). Preincubation of MM6 cells and human peripheral blood monocytes with dipalmitoyl phosphatidylcholine (DPPC), the major phospholipid component of surfactant, inhibited the oxidative response to zymosan. DPPC did not directly affect the activity of the NADPH oxidase in a MM6 reconstituted cell system, suggesting that DPPC does not affect the assembly of the individual components of this enzyme into a functional unit. The effects of DPPC were evaluated on both LPS/zymosan and PMA activation of protein kinase C (PKC), a ubiquitous intracellular kinase, in MM6 cells. We found that DPPC significantly inhibited the activity of PKC in stimulated cells by 70% (P < 0.01). Western blotting experiments demonstrated that DPPC was able to attenuate the activation of the PKCdelta isoform but not PKCalpha. These results suggest that DPPC, the major component of pulmonary surfactant, plays a role in modulating leukocyte inflammatory responses in the lung via downregulation of PKC, a mechanism that may involve the PKCdelta isoform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of Environmental exposure to some chemical solvents on DPPC as important component of lung surfactant: an ab initio study

One of the main components of lung alveoli is surfactant. DPPC (Dipalmitolphosphatidylcholine) is thepredominant lipid component in lung surfactant that is responsible for lowering surface tension in alveoli in thisarticle. We used a very approximate model with computational method of Ab initio to describe the interactionsbetween DPPC as important component of lung surfactant and some chemical ...

متن کامل

Time-dependent changes in pulmonary surfactant function and composition in acute respiratory distress syndrome due to pneumonia or aspiration

BACKGROUND Alterations to pulmonary surfactant composition have been encountered in the Acute Respiratory Distress Syndrome (ARDS). However, only few data are available regarding the time-course and duration of surfactant changes in ARDS patients, although this information may largely influence the optimum design of clinical trials addressing surfactant replacement therapy. We therefore examine...

متن کامل

The exogenous surfactant Curosurf enhances phosphatidylcholine content in isolated type II cells.

The exogenous surfactant, Curosurf, contains proteins as well as phospholipids. We investigated the possibility that these might affect the reutilization of exogenous phospholipid by type II alveolar cells isolated from rat lung. The time course of incorporation into lamellar bodies of radioactivity from tritiated dipalmitoyl-phosphatidylcholine (DPPC) contained within liposomes was studied. Ra...

متن کامل

Binding of adenovirus capsid to dipalmitoyl phosphatidylcholine provides a novel pathway for virus entry.

Adenovirus (Ad) is an airborne, nonenveloped virus infecting respiratory epithelium. To study the mechanism of Ad entry, we used alveolar adenocarcinoma A549 cells, which have retained the ability of alveolar epithelial type II cells to synthesize the major component of pulmonary surfactant, disaturated phosphatidylcholine. Stimulation of phosphatidylcholine secretion by calcium ionophore or ph...

متن کامل

Inhibitory effect of porcine surfactant on the respiratory burst oxidase in human neutrophils. Attenuation of p47phox and p67phox membrane translocation as the mechanism.

Surfactant has been shown to inhibit the production of reactive oxygen intermediates by various cells including alveolar macrophages and peripheral blood neutrophils. Superoxide O2-. production by the respiratory burst oxidase in isolated plasma membranes prepared from PMA-treated human neutrophils was significantly attenuated by prior treatment with native porcine surfactant. The effect was co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 288 6  شماره 

صفحات  -

تاریخ انتشار 2005